Formation Flying System Design for a Planet-Finding Telescope-Occulter System
نویسنده
چکیده
The concept of flying an occulting shade in formation with an orbiting space telescope to enable astronomical imaging of faint targets while blocking out background noise primarily from starlight near distant Earth-like planets has been studied in various forms over the past decade. Recent analysis has shown that this approach may offer comparable performance to that provided by a space-based coronagraph with reduced engineering and technological challenges as well as overall mission and development costs. This paper will present a design of the formation flying architecture (FFA) for such a collection system that has potential to meet the scientific requirements of the National Aeronautics and Space Administration’s (NASA’s) Terrestrial Planet Finder mission. The elements of the FFA include the relative navigation, intersatellite communication, formation control, and the spacecraft guidance, navigation, and control (GN&C) systems. The relative navigation system consists of the sensors and algorithms to provide necessary range, bearing or line-of-sight, and relative attitude between the telescope and occulter. Various sensor and filtering (estimation) approaches will be introduced. A formation control and GN&C approach will be defined that provides the proper alignment and range between the spacecraft, occulter, and target to meet scientific objectives. The state of technology will be defined and related to several formation flying and rendezvous spacecraft demonstration missions that have flown.
منابع مشابه
Optimal Occulter Design for Finding Extrasolar Planets
One proposed method for finding terrestrial planets around nearby stars is to use two spacecraft—a telescope and a specially shaped occulter, whose shape is specially designed to prevent all but a tiny fraction of the starlight from diffracting into the telescope. As the cost and observing cadence for such a mission will be driven largely by the separation between the two spacecraft, it is crit...
متن کاملDiffraction-based sensitivity analysis for an external occulter laboratory demonstration.
An external flower-shaped occulter flying in formation with a space telescope can theoretically provide sufficient starlight suppression to enable direct imaging of an Earth-like planet. Occulter shapes are scaled to enable experimental validation of their performance at laboratory dimensions. Previous experimental results have shown promising performance but have not realized the full theoreti...
متن کاملEliminating Poisson’s Spot with Linear Programming
A leading design concept for NASA’s upcoming planet-finding space telescope involves placing an occulter 72,000 km in front of a 4-m telescope. The purpose of the occulter is to block the bright starlight thereby enabling the telescope to take pictures of planets orbiting the blocked star. Unfortunately, diffraction effects prevent a simple circular occulter from providing a sufficiently dark s...
متن کاملAnalyzing the designs of planet finding missions
We present an extended framework for the analysis of direct detection planet finding missions using space telescopes. We describe the components of a design reference mission (DRM), including the complete description of an arbitrary planetary system, the description of a planet finding instrument, and the modeling of an observation at an arbitrary time. These components are coupled with a decis...
متن کاملBoundary diffraction wave integrals for diffraction modeling of external occulters.
An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007